3.27 \(\int \frac{\cos ^2(e+f x) (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{9/2}} \, dx\)

Optimal. Leaf size=193 \[ \frac{a^2 \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{c^3 f (c-c \sin (e+f x))^{3/2}}+\frac{a^3 \cos (e+f x) \log (1-\sin (e+f x))}{c^4 f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}-\frac{a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 c^2 f (c-c \sin (e+f x))^{5/2}}+\frac{\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 c f (c-c \sin (e+f x))^{7/2}} \]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(3*c*f*(c - c*Sin[e + f*x])^(7/2)) - (a*Cos[e + f*x]*(a + a*Sin[e +
f*x])^(3/2))/(2*c^2*f*(c - c*Sin[e + f*x])^(5/2)) + (a^2*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c^3*f*(c - c*
Sin[e + f*x])^(3/2)) + (a^3*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(c^4*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin
[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.662676, antiderivative size = 193, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.132, Rules used = {2841, 2739, 2737, 2667, 31} \[ \frac{a^2 \cos (e+f x) \sqrt{a \sin (e+f x)+a}}{c^3 f (c-c \sin (e+f x))^{3/2}}+\frac{a^3 \cos (e+f x) \log (1-\sin (e+f x))}{c^4 f \sqrt{a \sin (e+f x)+a} \sqrt{c-c \sin (e+f x)}}-\frac{a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 c^2 f (c-c \sin (e+f x))^{5/2}}+\frac{\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 c f (c-c \sin (e+f x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(5/2))/(c - c*Sin[e + f*x])^(9/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(3*c*f*(c - c*Sin[e + f*x])^(7/2)) - (a*Cos[e + f*x]*(a + a*Sin[e +
f*x])^(3/2))/(2*c^2*f*(c - c*Sin[e + f*x])^(5/2)) + (a^2*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(c^3*f*(c - c*
Sin[e + f*x])^(3/2)) + (a^3*Cos[e + f*x]*Log[1 - Sin[e + f*x]])/(c^4*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin
[e + f*x]])

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2739

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)), x] - Dist[(b*(2*m - 1)
)/(d*(2*n + 1)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rule 2737

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(
a*c*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x) (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{9/2}} \, dx &=\frac{\int \frac{(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{7/2}} \, dx}{a c}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f (c-c \sin (e+f x))^{7/2}}-\frac{\int \frac{(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{5/2}} \, dx}{c^2}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f (c-c \sin (e+f x))^{7/2}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 c^2 f (c-c \sin (e+f x))^{5/2}}+\frac{a \int \frac{(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{3/2}} \, dx}{c^3}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f (c-c \sin (e+f x))^{7/2}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 c^2 f (c-c \sin (e+f x))^{5/2}}+\frac{a^2 \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c^3 f (c-c \sin (e+f x))^{3/2}}-\frac{a^2 \int \frac{\sqrt{a+a \sin (e+f x)}}{\sqrt{c-c \sin (e+f x)}} \, dx}{c^4}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f (c-c \sin (e+f x))^{7/2}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 c^2 f (c-c \sin (e+f x))^{5/2}}+\frac{a^2 \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c^3 f (c-c \sin (e+f x))^{3/2}}-\frac{\left (a^3 \cos (e+f x)\right ) \int \frac{\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{c^3 \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f (c-c \sin (e+f x))^{7/2}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 c^2 f (c-c \sin (e+f x))^{5/2}}+\frac{a^2 \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c^3 f (c-c \sin (e+f x))^{3/2}}+\frac{\left (a^3 \cos (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c^4 f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c f (c-c \sin (e+f x))^{7/2}}-\frac{a \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 c^2 f (c-c \sin (e+f x))^{5/2}}+\frac{a^2 \cos (e+f x) \sqrt{a+a \sin (e+f x)}}{c^3 f (c-c \sin (e+f x))^{3/2}}+\frac{a^3 \cos (e+f x) \log (1-\sin (e+f x))}{c^4 f \sqrt{a+a \sin (e+f x)} \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 4.21542, size = 234, normalized size = 1.21 \[ \frac{a^2 \sqrt{a (\sin (e+f x)+1)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^3 \left (3 \sin (3 (e+f x)) \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+30 \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )-18 \cos (2 (e+f x)) \left (\log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+1\right )-9 \sin (e+f x) \left (5 \log \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )+4\right )+34\right )}{6 c^4 f (\sin (e+f x)-1)^4 \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(5/2))/(c - c*Sin[e + f*x])^(9/2),x]

[Out]

(a^2*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*Sqrt[a*(1 + Sin[e + f*x])]*(34 + 30*Log[Cos[(e + f*x)/2] - Sin[(e
 + f*x)/2]] - 18*Cos[2*(e + f*x)]*(1 + Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]) - 9*(4 + 5*Log[Cos[(e + f*x)/
2] - Sin[(e + f*x)/2]])*Sin[e + f*x] + 3*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]*Sin[3*(e + f*x)]))/(6*c^4*f*
(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^4*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.208, size = 401, normalized size = 2.1 \begin{align*}{\frac{\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +2}{3\,f \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{3}+2\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) +3\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}-4\,\sin \left ( fx+e \right ) +2\,\cos \left ( fx+e \right ) -4 \right ) } \left ( 6\,\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -3\,\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -8\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) -18\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +9\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -24\,\sin \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +12\,\sin \left ( fx+e \right ) \ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) +6\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}+14\,\sin \left ( fx+e \right ) +24\,\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -12\,\ln \left ( 2\, \left ( \cos \left ( fx+e \right ) +1 \right ) ^{-1} \right ) -6 \right ) \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{5}{2}}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{9}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(9/2),x)

[Out]

1/3/f*(6*sin(f*x+e)*cos(f*x+e)^2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-3*sin(f*x+e)*cos(f*x+e)^2*ln(2/(co
s(f*x+e)+1))-8*cos(f*x+e)^2*sin(f*x+e)-18*cos(f*x+e)^2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+9*cos(f*x+e)
^2*ln(2/(cos(f*x+e)+1))-24*sin(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+12*sin(f*x+e)*ln(2/(cos(f*x+e
)+1))+6*cos(f*x+e)^2+14*sin(f*x+e)+24*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-12*ln(2/(cos(f*x+e)+1))-6)*(s
in(f*x+e)*cos(f*x+e)-cos(f*x+e)^2-2*sin(f*x+e)-cos(f*x+e)+2)*(a*(1+sin(f*x+e)))^(5/2)/(cos(f*x+e)^2*sin(f*x+e)
-cos(f*x+e)^3+2*sin(f*x+e)*cos(f*x+e)+3*cos(f*x+e)^2-4*sin(f*x+e)+2*cos(f*x+e)-4)/(-c*(-1+sin(f*x+e)))^(9/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{5}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(9/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (a^{2} \cos \left (f x + e\right )^{4} - 2 \, a^{2} \cos \left (f x + e\right )^{2} \sin \left (f x + e\right ) - 2 \, a^{2} \cos \left (f x + e\right )^{2}\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{5 \, c^{5} \cos \left (f x + e\right )^{4} - 20 \, c^{5} \cos \left (f x + e\right )^{2} + 16 \, c^{5} -{\left (c^{5} \cos \left (f x + e\right )^{4} - 12 \, c^{5} \cos \left (f x + e\right )^{2} + 16 \, c^{5}\right )} \sin \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="fricas")

[Out]

integral(-(a^2*cos(f*x + e)^4 - 2*a^2*cos(f*x + e)^2*sin(f*x + e) - 2*a^2*cos(f*x + e)^2)*sqrt(a*sin(f*x + e)
+ a)*sqrt(-c*sin(f*x + e) + c)/(5*c^5*cos(f*x + e)^4 - 20*c^5*cos(f*x + e)^2 + 16*c^5 - (c^5*cos(f*x + e)^4 -
12*c^5*cos(f*x + e)^2 + 16*c^5)*sin(f*x + e)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{5}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(9/2), x)